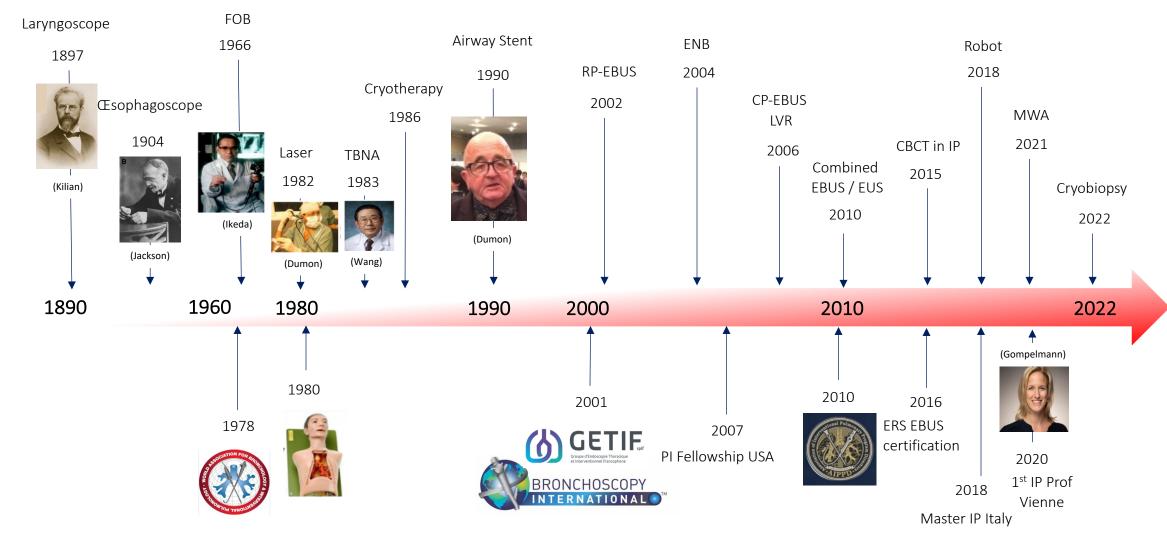


Cryobiopsie ganglionnaire et minisonde avec electronavigation

Amir Hanna
Pneumologue interventionnel
Hôpital Marie Lannelongue - Paris
28.09.2024

Conflits d'intérêt

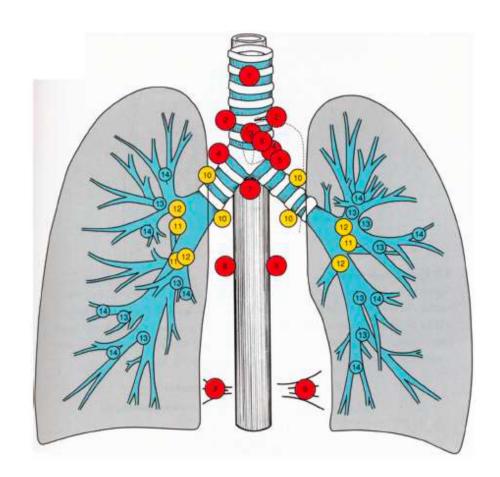
OLYMPUS



Innovation

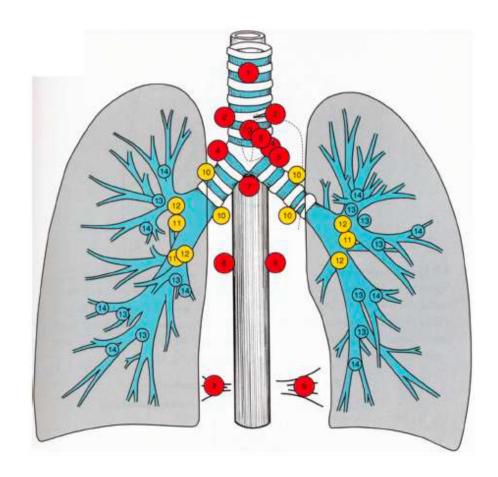
Education

La PI de l'évolution à la révolution



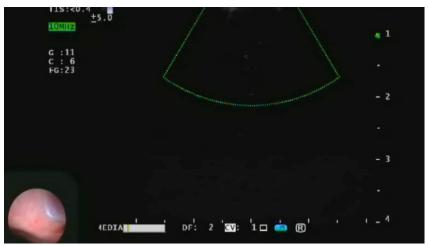
PI = Boîte à outils

- 1. Lésion endobronchique
 - Fibroscopie bronchique
- 2. Adenopathies mediastinales et hilaires
 - EBUS Axiale
- 3. Nodules pulmonaires peripheriques
 - EBUS Radiale
 - Navigation électromagnétique
 - CBCT
 - Robot
- 4. Désobstruction endobronchique
 - Bronchoscopie rigide



PI = Boîte à outils

- 1. Lésion endobronchique
 - Fibroscopie bronchique
- 2. Adenopathies mediastinales et hilaires
 - EBUS Axiale
- 3. Nodules pulmonaires peripheriques
 - EBUS Radiale
 - Navigation électromagnétique
 - CBCT
 - Robot
- 4. Désobstruction endobronchique
 - Bronchoscopie rigide



Echoendoscopie bronchique axiale:

- Adénopathies médiastinales ou hilaires.
- 2 approches pour réaliser une biopsie médiastinale:
 - Chirurgicale: Mediastinoscopie, mediastinotomie et thoracoscopie
 - Endoscopique bronchique CP-EBUS
- EBUS axiale:
 - Gold standard (Guidelines ERS, ATS, ACCP)
 - Moins invasive, sensible, bien toléré

Outils de prélèvement:

- A. EBUS TBNA (Needle Aspiration)
- B. EBUS TBFB (Forceps Biopsy)
- C. EBUS TBCB (Cryo Biopsy)

A. EBUS – TBNA (Needle aspiration):

Sarcoïdose

Efficacy and safety of convex probe EBUS-TBNA in sarcoidosis: a systematic review and meta-analysis

Ritesh Agarwal ¹, Arjun Srinivasan, Ashutosh N Aggarwal, Dheeraj Gupta

Affiliations + expand

PMID: 22417738 DOI: 10.1016/j.rmed.2012.02.014

- Meta analyse 2004-2011
- 15 études, 553 patients
- Diagnostic yield from 54 to 93% with the pooled diagnostic accuracy being 79% (95% CI, 71-86%)

Tuberculose

Diagnostic Value of Convex Probe Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Mediastinal Tuberculous Lymphadenitis: A Systematic Review and Meta-Analysis

Wei Li ¹, Ting Zhang ¹, Yuqing Chen ¹, Chao Liu ¹, Wenjia Peng ²

Affiliations + expand

PMID: 26177653 PMCID: PMC4510950 DOI: 10.12659/MSM.894526

- 14 études
- 684 patients
- Diagnostic yield of EBUS-TBNA for mediastinal TBLA was 80%)95% CI: 74-86%).

Lymphome

Diagnostic Accuracy of Endobronchial Ultrasound Transbronchial Needle Aspiration in Lymphoma. A Systematic Review and Meta-Analysis

Gonzalo Labarca ¹, Melibea Sierra-Ruiz ², Fayez Kheir ³, Erik Folch ⁴, Adnan Majid ², Hiren J Mehta ⁵, Michael A Jantz ⁵, Sebastian Fernandez-Bussy ⁶

- 14 études, 425 patients
- Sensibilité: 66.2% (confidence interval [CI], 55-75.8%; $I^2 = 76.2\%$), spécificité: 99.3% (CI, 98.2-99.7%; $I^2 = 40\%$).

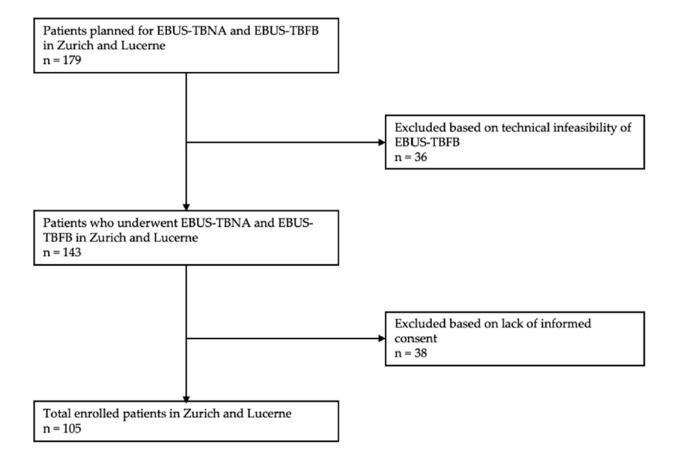
A. Nouveau diagnostic:

```
13 études, 243 patients
Sensibilité of 67.1% (CI, 54.2-77.9%; I^2 = 66.8\%)
Spécificité of 99.6% (CI, 99.1-99.8%; I^2 = 0\%)
```

3. Récidive:

```
11 études, 166 patients
Sensibilité of 77.8% (CI, 68.1-85.2%; I^2 = 20.2\%)
Spécificité of 99.5% (CI, 98.9-99.8%; I^2 = 0\%)
```


B. EBUS – TBFB (Foceps biopsy):



Endobronchial Ultrasound-Guided Transbronchial Forceps Biopsy: A Retrospective Bicentric Study Using the Olympus 1.5 mm Mini-Forceps

Fabienne Rüber ¹, Gilles Wiederkehr ², Carolin Steinack ¹, Sylvia Höller ^{3,4}, Peter Karl Bode ^{4,5}, Fabian Kölbener ⁶ and Daniel Peter Franzen ^{1,7},*

Citation: Rüber, F.; Wiederkehr, G.; Steinack, C.; Höller, S.; Bode, P.K.; Kölbener, F.; Franzen, D.P. Endobronchial Ultrasound-Guided Transbronchial Forceps Biopsy: A Retrospective Bicentric Study Using the Olympus 1.5 mm Mini-Forceps. J. Clin. Med. 2022, 11, 4700. https://doi.org/10.3390/ jcm11164700

Academic Editors: Sukhwinder Singh Sohal and Filippo Lococo

Received: 4 July 2022 Accepted: 9 August 2022

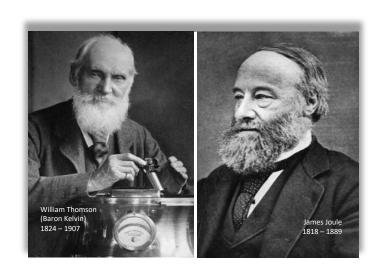
Published: 11 August 2022

Table 4. Diagnostic yield of TBNA and TBNA plus TBFB overall and divided into the final diagnosis.

	Total	TBNA	TBNA plus TBFB	<i>p</i> -Value
Overall	105	65/105(61.9)	90/105 (85.7)	<0.001
Final diagnosis				
Lung cancer	34	26/34 (76.5)	33/34 (97.1)	0.016
Lung cancer staging	11	7/11 (63.6)	7/11 (63.6)	>0.05
Other malignancies *	7	3/7 (42.9)	4/7 (57.1)	>0.05
Lymphoma	8	5/8(62.5)	6/8(75)	>0.05
Sarcoidosis	27	12/27 44.4	23/27 (85.2)	0.001
Other	18	12/18 (66.7)	17/18 (94.4)	>0.05

C. EBUS – TBCB (Cryobiopsie):

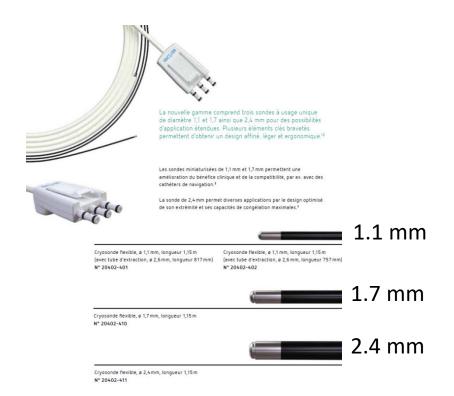
• Joule—Thompson:


• Compression d'un gaz, a haut débit, qui se dilate rapidement et crée des températures bases en qq sec a l'extrémité distale de la sonde.

• L'Equipment:

- Console (Pression, T∘C -70 ∘C to -89 ∘C, durée d'application)
- Cryogènes (CO2 ou protoxyde d'azote)
- Cryo sonde (1.1, 1.7, 2.4 mm)

Cryotechniques:


- Cryo-biopsie
- Cryothérapie
- Cryo-recanalization

Cryobiopsie:

EUROPEAN RESPIRATORY journal

FLAGSHIP SCIENTIFIC JOURNAL OF ERS

European Respiratory Society guidelines on transbronchial lung cryobiopsy in the diagnosis of interstitial lung diseases

PICO question 1: In patients with undiagnosed ILD considered eligible to undergo SLB, is TBLC a valid replacement test?

Recommendation

For patients with undiagnosed ILD considered eligible to undergo SLB, the task force suggests performing TBLC if obtaining histopathological data is indicated (conditional recommendation for the intervention, 'very low' certainty of evidence). Remark: this recommendation applies to centers experienced in performing TBLC.

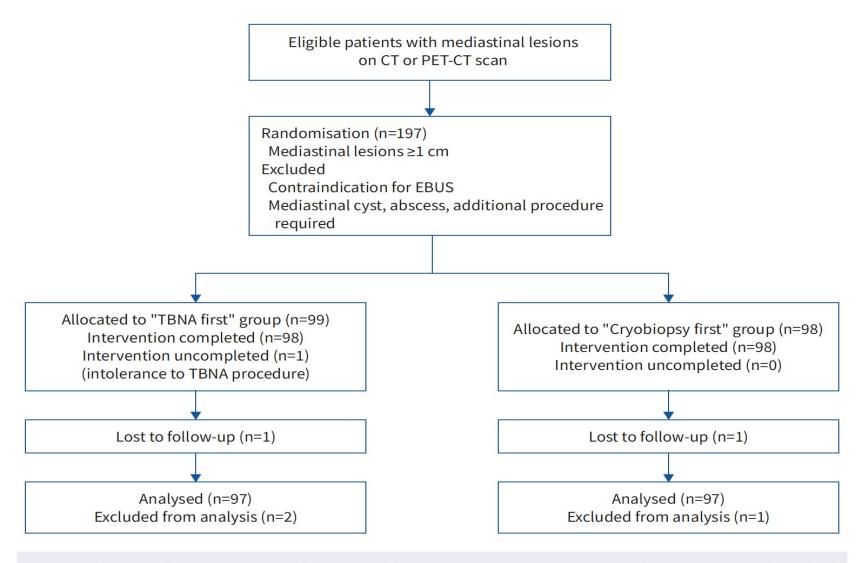
PICO question 2: In patients with undiagnosed ILD not considered eligible to undergo SLB, does TBLC increase the diagnostic confidence of the multidisciplinary team discussion?

Recommendation

For patients with undiagnosed ILD not considered eligible to undergo SLB, the task force suggests TBLC if obtaining histopathological data is indicated (conditional recommendation, 'very low' certainty of evidence). Remark: this recommendation applies to centers experienced in performing TBLC; the advantages of potentially increasing diagnostic certainty by performing TBLC against the disadvantages of potential serious adverse events should be weighed in each individual patient.

universite

Please cite this article as: Korevaar DA, Colella S, Fally M, *et al.* European Respiratory Society guidelines on transbronchial lung cryobiopsy in the diagnosis of interstitial lung diseases. *Eur Respir J* 2022; in press (https://doi.org/10.1183/13993003.00425-2022).


Transbronchial mediastinal cryobiopsy in the diagnosis of mediastinal lesions: a randomised trial

Jing Zhang¹, Jie-Ru Guo¹, Zan-Sheng Huang¹, Wan-Lei Fu², Xian-Li Wu¹, Na Wu³, Wolfgang M. Kuebler⁴, Felix J.F. Herth ^{5,6,7} and Ye Fan^{1,7}

¹Dept of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China. ²Dept of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. ³Dept of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China. ⁴Institute of Physiology, Charité Universitätsmedizin, Berlin, Germany. ⁵Dept of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany. ⁶Translational Lung Research Center Heidelberg, University of Heidelberg, Heidelberg, Germany. ⁷Felix J.F. Herth and Ye Fan contributed equally to this article as lead authors and supervised the work.

FIGURE 1 Patient flow. CT: computed tomography; PET: positron emission tomography; EBUS: endobronchial ultrasound; TBNA: transbronchial needle aspiration.

TABLE 2 Diagnostic yields of TBNA and transbronchial mediastinal cryobiopsy					
	Total	TBNA	Cryobiopsy	p-value	
Subjects n	194	194	194		
Diagnostic yield n (%)				0.001	
No	13 (6.7%)	39 (20.1%)	16 (8.2%)		
Yes	181 (93.3%)	155 (79.9%)	178 (91.8%)		
Common tumour n					
Lung, adenocarcinoma	75	68	72		
Lung, squamous cell	24	24	23		
Lung, large cell	3	3	3		
Lung, NSCLC (NOS)	7	6	5		
Lung, small cell	26	26	26		
Total n (%)	135 (69.6%)	127 (65.5%)	129 (66.5%)	0.58	
Uncommon tumour n					
Lung, carcinoid	1	0	1		
Lung, sarcomatoid	1	1	1		
Lymphoma	8	1			
Seminoma	1	0	1		
Thymic carcinoma	1	1	1		
Total n (%)	12 (6.2%)	3 (1.5%)	11 (5.7%)	0.001	
Benign disorder n					
Sarcoidosis	15	10	15		
<u>Tuberculosis</u>	16	8	16		
Pneumoconiosis	7	7	7		
Total n (%)	47 (24.2%)	25 (12.9%)	38 (19.6%)	0.004	

TBNA: transbronchial needle aspiration; NSCLC: non-small cell lung cancer; NOS: not otherwise specified.

Diagnostic yield:

Oveall: 79.9% Vs 91.8%

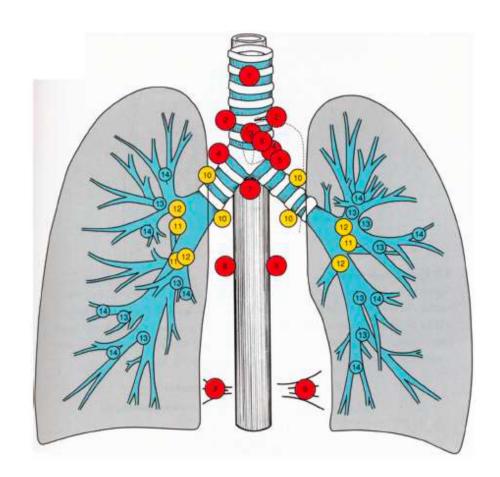
• Common tumors: 94% Vs 95.5%

Uncommon tumors: 25% Vs 91.6%

• Lymphoma: 12.5% Vs 87.5%

Benign disorders: 53% Vs 81%

Complications


	"TBNA first" group	"Cryobiopsy first" group	p-value
Subjects n	98	98	
Bleeding n			
Grade 2	9	9	
Grade 3	0	2	
Grade 4	0	0	
Total n (%)	83 (84.7%)	86 (87.8%)	0.53
Pneumothorax n (%)	1 (1.0%)	1 (1.0%)	1
Pneumomediastinum n (%)	0 (0%)	1 (1.0%)	1
Death n (%)	0 (0%)	0 (0%)	-

PI = Boîte à outils

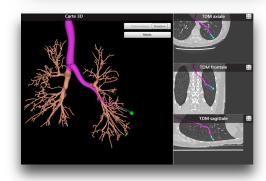
- 1. Lésion endobronchique
 - Fibroscopie bronchique
- 2. Adenopathies mediastinales et hilaires
 - EBUS Axiale
- 3. Nodules pulmonaires peripheriques
 - EBUS Radiale
 - Navigation électromagnétique
 - CBCT
 - Robot
- 4. Désobstruction endobronchique
 - Bronchoscopie rigide

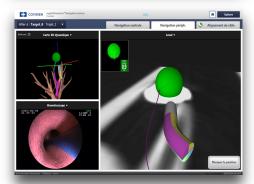
Nodules pulmonaires périphériques

- Augmentation de la découverte fortuite des nodules pulmonaires:
 - Dépistage du cancer du poumon
 - Amélioration de la qualité d'imagerie
- Défi pour les pneumologues interventionnels.
- 3 approches pour réaliser une biopsie pulmonaire:
 - Chirurgicale
 - Ponction trans-thoracique guidée sous scanner
 - Endoscopique bronchique RP-EBUS
 - 1. EBUS radiale minisonde
 - 2. Electronavigation
 - 3. Cone Beam CT
 - 4. Bronchoscopie robotique

1. Echoendoscopie bronchique radiale:

- Avantages:
 - Simple, accessible
 - Sous AL
 - Cout
- RP-EBUS RD: 70,6 %+
- Complications sont rares*
 - Pneumothorax 1,08 %
 - Saignements 2,8 %





2. Electronavigation ENB:

- TDM de phase pour créer une image bronchoscopique virtuelle.
- Champ magnétique autour du patient pour détecter un dispositif suivi afin d'obtenir la position superposée sur la carte bronchoscopique virtuelle.
- Chevauchement de l'imagerie avec le champ électromagnétique via des points sélectionnés et fournir un itinéraire jusqu'à la lésion.
- Rendement diagnostique : L'étude NAVIGATE
 - 1 157 biopsies guidées par ENB
 - 94 % (ont réussi la navigation et obtenu des échantillons de tissu)
 - 73 % à 12 mois
 - Complications: PNO 4.3%, Saignement 2.5%

Electromagnetic navigation ENB:

Sensitivity and Safety of Electromagnetic SCHEST Navigation Bronchoscopy for Lung Cancer Diagnosis Systematic Review and Meta-analysis

Erik E. Folch, MD; Gonzalo Labarca, MD; Daniel Ospina-Delgado, MD; Fayez Kheir, MD; Adnan Majid, MD; Sandeep J. Khandhar, MD; Hiren J. Mehta, MD; Michael A. Jantz, MD; and Sebastian Fernandez-Bussy, MD

• 40 études, 3356 nodules

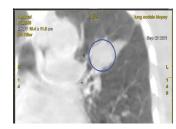
Taille: 23.2 mm

Durée médiane de procédure: 46.3 min

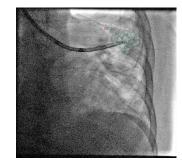
• Navigation réussie: 98%

• RD: 77%

Complications: PNO 2.0%


3. Cone Beam CT

Step 1: GA


Step 2: CBCT

Step 3: Create a masque

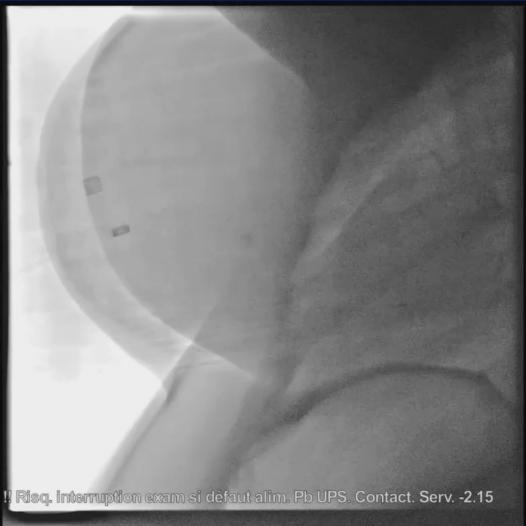
Step 4: Fusion and Navigation

1% de 3 Gy mGy/min 1.6

-- BPM

■ 40 cm

130 cm


↓27 cm

0 deg

LAO 92 deg CAU 0 deg

No Signal

4. Bronchoscopie robotique

Monarch™ platform

(Images courtesy of Auris Health, Inc., Redwood Ci)

Ion Robotic System

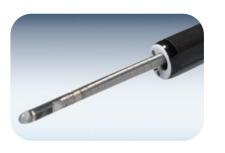
(Images courtesy of Intuitive Surgical®, Sunnyvale, CA,USA)

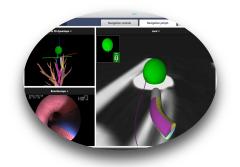
Galaxy System™

(Images courtesy of Noah Medical, San Carlos, CA, USA)

Bronchoscopie robotique

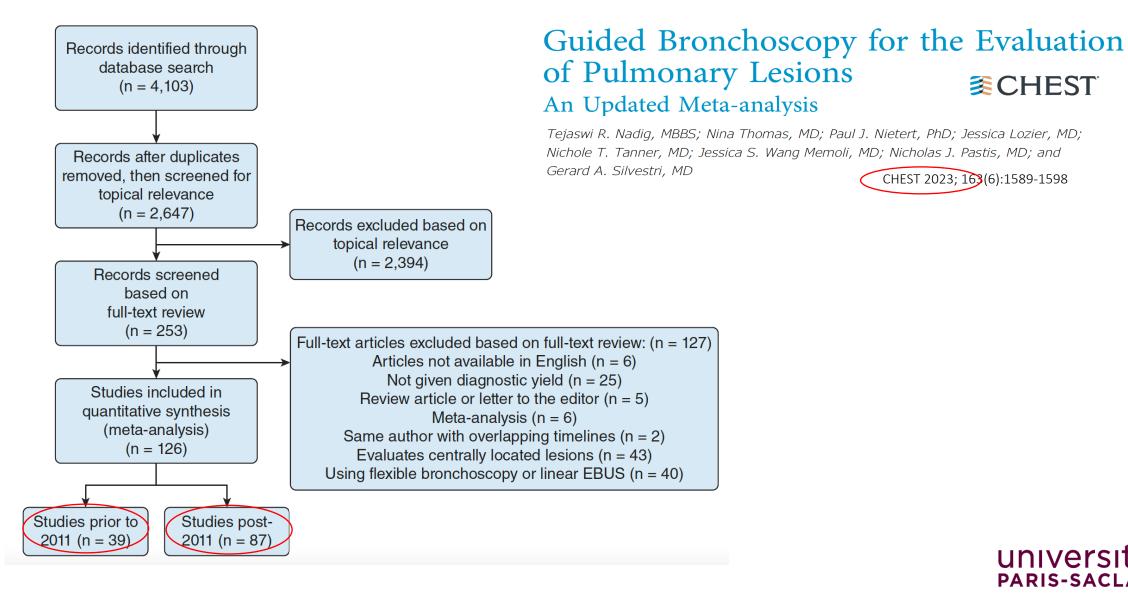
Diagnostic Performance and Safety Profile of Robotic-assisted Bronchoscopy: A Systematic Review and Meta-Analysis




Muhammad Sajawal Ali , Uzair Khan Ghori , Max Theodore Wayne , Eugene Shostak , and Jose De Cardenas https://doi-org.proxy.insermbiblio.inist.fr/10.1513/AnnalsATS.202301-075OC PubMed: 37769170

- 20 études, 1779 lésions
- Rendement diagnostique 84.3%
- Meilleur rendement:
 - Lésion > 20 mm
 - Signe de la bronche
- Complications:
 - PNO 2.3%
 - PNO drainé 1.2%
 - Saignement important 0.5%

Machine cost	100k	200k	900k	1.2M
Cost/procedure	500 euros	1500 euros	2600 euros	1000 euros
Diagnostic Yield	70%1	77 %²	84%³	Aiding tool



^{1.} Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. 2. J Thorac Oncol. 2019 Mar;14(3):445-458. PMID: 30476574

^{3.} Pubmed: 37669170

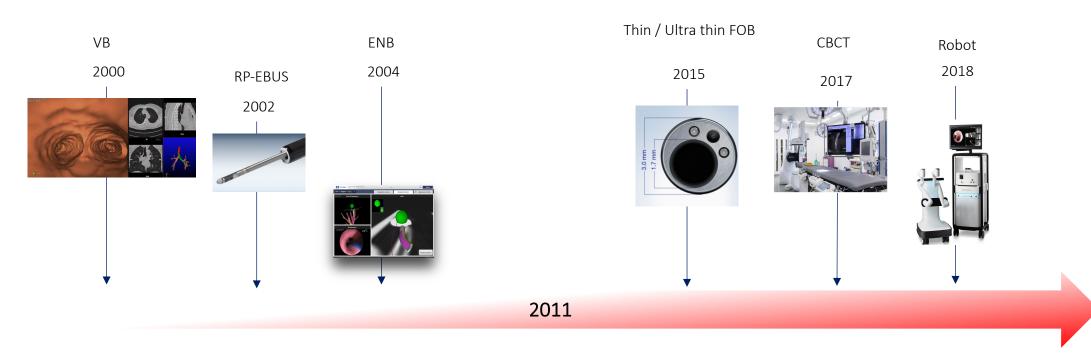
Est-ce qu'on a amélioré le RD?

≋CHEST

CHEST 2023; 163(6):1589-1598

Est-ce qu'on a amélioré le RD?

TABLE 4] Study Characteristics and Diagnostic Yield, Summarized Across Types of Technology Used


Technology Used	No. of Study Arms	Proportion of Study Arms With High Bias, %	Total No. of Nodules Included	No. of Nodules Per Study, Median (range)	Diagnostic Yield, Mean (95% CI)
R-EBUS \pm GS	51	78.4	5,494	83 (11-760)	70.9% (67.9%-73.9%)
ENB	24	75.0	1,952	53.5 (13-279)	74.0% (68.6%-79.4%)
ENB + R-EBUS	15	73.3	2,913	56 (26-1,329)	66.5% (59.8%-73.3%)
VB + R-EBUS	13	76.9	1,048	55 (12-334)	76.4% (72.7%-80.1%)
Ultrathin or thin $+$ VB	10	80.0	795	63 (25-167)	69.9% (62.4%-77.3%)
Ultrathin or thin $+$ R-EBUS	7	42.9	1,133	101 (20-467)	62.6% (55.3%-70.0%)
Other combination	7	57.1	771	63 (31-245)	64.4% (49.0%-79.9%)
Ultrathin or thin	6	50.0	770	104 (20-340)	50.2% (37.3%-63.2%)
Ultrathin + VB + R-EBUS	6	16.7	737	152.5 (32-179)	67.3% (58.4%-76.2%)
Robotic	6	66.7	483	56.5 (15-167)	77.6% (70.4%-84.8%)
VB	4	100.0	293	60.5 (50-122)	72.4% (55.1%-89.7%)

ENB = electromagnetic navigational bronchoscopy; GS = guide sheath; R-EBUS = radial endobronchial ultrasound; VB = virtual bronchoscopy.

Est-ce qu'on a amélioré le RD?

39 études 3,052 lésions

RD: ?

70.5%

NON

87 études 13,535 lésions RD: ?

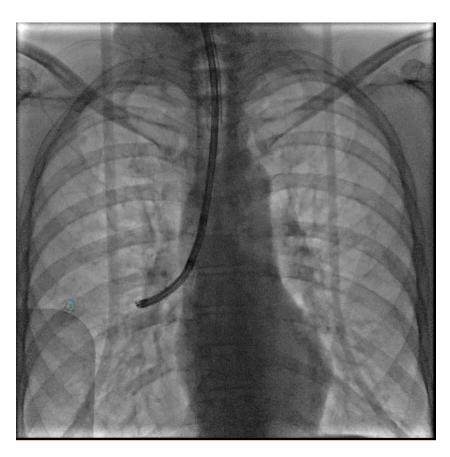
69.2%

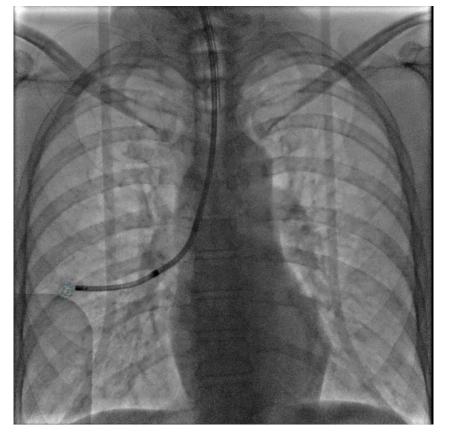
Pourquoi ???

- Amélioration des techniques de navigation mais pas le RD
- Différence entre une navigation réussie et un diagnostic positif

• Pourquoi?

L'anapath!!!!

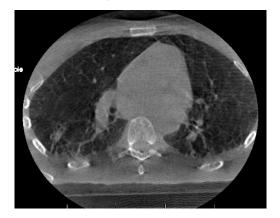

- A. Absence de vision directe
- B. Atélectasie
- C. CT to body divergence
- D. Techniques de biopsie



A. Pas de vision directe

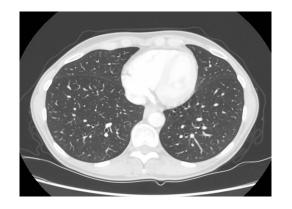
Fibroscope standard 4.9 mm

Fibroscope Ultra-fin 3 mm

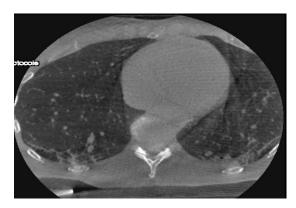


B. Atélectasie

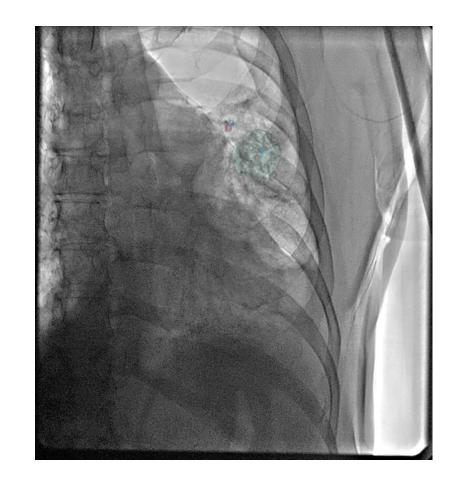
Scanner Preprocédure



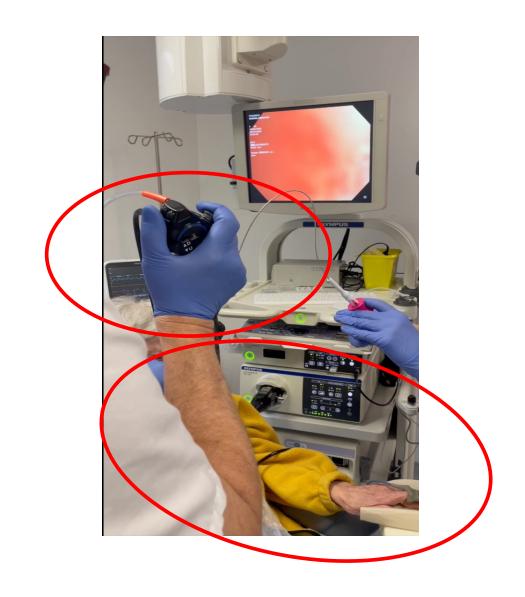
Ventilation nonoptimisée



Ventilation optimisée



C. CT to body divergence


- Mouvements respiratoires changent
 - Le volume pulmonaire
 - L'orientation des VA et des instruments
- La superposition de l'emplacement réel de la lésion et de la cible ne se produit qu'en un seul point du cycle respiratoire (fin de l'expiration).
- Distance de mismatch: 17.6 mm et 25.3 mm

D. Techniques de prélèvement

Cryobiopsie pour NPP: ML data

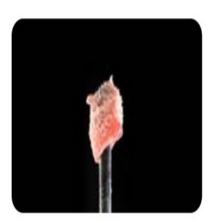
Table 1.: Results of endoscopic pulmonary <u>cryobiopsy</u> for PPN's.

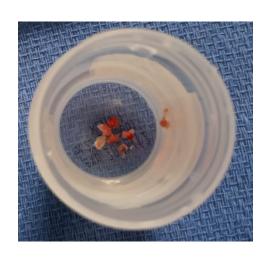
	Pulmonary lesions n=39
Age, mean±SD	68±10
Sex, F/M	18/21
Lesion size (mm), mean±SD	20±9
Localization	
Right Upper Lobe, n (%)	8 (21)
Middle Lobe	6 (15)
Right Inferior Lobe	5 (13)
Left Upper Lobe	13 (33)
Left Inferior Lobe	7 (18)
Bleeding, n (%)	12 (31)
Diagnose, n (%)	33 (85)

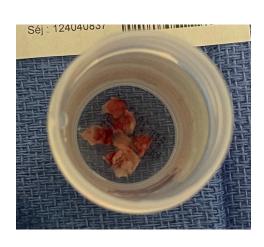
Bronchoscopie robotique

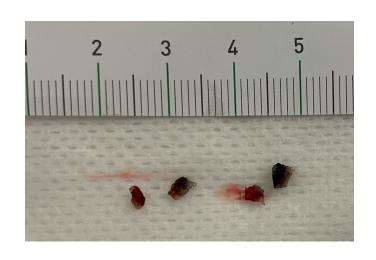
RD: 84.3%

Unpublished data

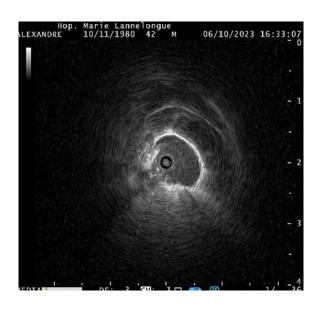

Cryobiopsie NPP



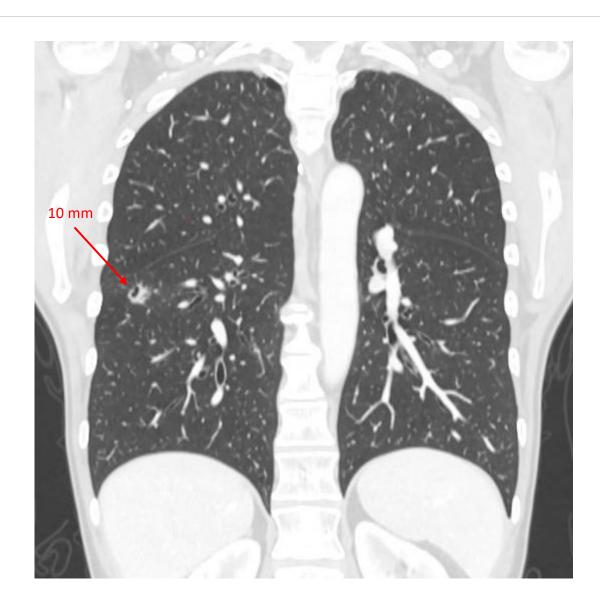


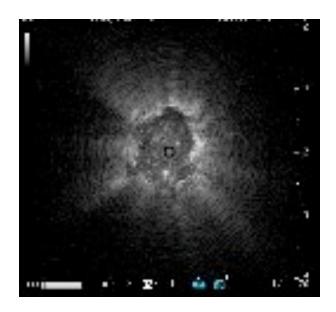


Taille de prélèvements

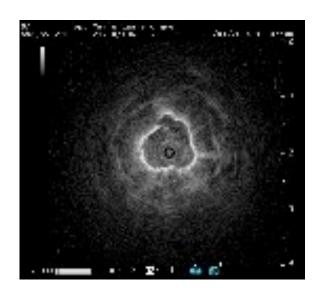


Seminome





ADK



Tumeur carcinoïde

Les indications de la cryobiopsie:

- 1. PID
- 2. Nodules pulmonaires périphériques
- 3. Adénopathies du médiastin
- 4. Désobstruction endobronchique
- 5. Ablation des corps étrangers
- 6. Decaillotage

Merci