

Les Grandes Avancées en Pneumologie

L'Imagerie Thoracique au service du Pneumologue: hier, aujourd'hui et demain?

Philippe Grenier

La Tomodensitométrie en Coupes Fines (Haute Résolution)

Coupes de 1,5 mm d'épaisseur avec un intervalle de 10 mm Filtre de reconstruction favorisant la résolution spatiale

Nakata. Radiology; 1985;157: 181 Zerhouni. J Thorac Imaging;1985;1:54 Naidich. J Thorac Imaging;1985;1:39 Mayo. Radiology;1987;163:507 Murata. Invest Radiol;1988;23:170

La Tomodensitométrie en Coupes Fines (Haute Résolution)

Mayo. Radiology; 1987; 163: 507

La Tomodensitométrie en Haute Résolution du Thorax pour le Diagnostic des DDB et des PID

Grenier. Radiology;1986;161:95-99 Grenier. Radiology; 1991;179:123 Grenier. Radiology; 1994;191:383

Rydberg. Radiographics 2000; 20:1787

La TDM Volumique en Haute Résolution

0.625 mm detector size
Axial thickness 0.8 mm
Reconst. increment 0.6 mm
High frequency algorithm
768 ² matrix
325 FOV

DLP: 326 mGy.cm

CT Assessment of Longitudinal Shape of Airway Lumen

Maximum Intensity Projection (MIP)

It consists of projecting the voxel with the highest attenuation value on every view throughout the volume onto a 2D image Improves the detection of pulmonary nodules.

Helps characterize small nodules according to their distribution

Beigelman-Aubry. Radiographics; 2005;25:1639

Tree in bud pattern

Respiratory Bronchiolitis

Smoking-related inflammation of the respiratory bronchioles

Minimum Intensity Projection (minIP)

Beigelman-Aubry. Radiographics; 2005;25:1639

Minimum Intensity Projection (minIP)

Distal traction bronchiectasis and bronchiolectasis

Peribronvascular fibrosis (sarcoidosis)

Oblique mIP-multiplanar VR image (30-mm-thick slab)

Decreased lung attenuation and air trapping

Mosaic perfusion

Exp. Air Trapping minIP

- The most common causes:
 - Obliterative bronchiolitis
 - Asthma
 - Hypersensitivity P.

Low dose expiratory MDCT

20 mAs

Volumetric MDCT Imaging of the Trachea

Tracheal Disease

Ulcerating tracheobronchitis and fibrosis causing erosion of cartilage, fistulas, and tracheobronchial stenosis

Granulomatosis with polyangiitis

Grenier. Eur Radiol; 2002. 12: 1022

Multinodular Appearance of Airway Inner Surface

Granulomatosis with Polyangiitis

Granulomatous inflammation and vasculitis in the mucosa and the submucosa of the airways

Angioscannographie dans le Diagnostic d'Embolie Pulmonaire

Angioscannographie dans le Diagnostic d'Embolie Pulmonaire

Signes Scannographiques de Gravité

VD/VG > 0.9: facteur de gravité avec mortalité élevée Absence d'élargissement ventriculaire droit a une valeur prédictive négative de 99% concernant la mortalité à 30 jours

Schoeft. Circulation. 2004;110:3276 Becattini. Eur Respir J; 2014;43: 1678

Angioscannographie dans le Diagnostic d'Embolie Pulmonaire

Embolies distales de découverte fortuite

Dans une série de 2216 angioscanners, la prévalence des EP sous segmentaires étaient de 3,9%, soit 15% des EP détectées. Seulement 50% de ces embolies ont été traitées, et aucune n'a récidivé, qu'il y ait ou non anticoagulation

Goy. J Thromb Haemost JTH; 2015;13:214

Modes d'acquisition spectrale

Double source

Oscillation des kV en cours de rotation Détecteur double couche

CT spectral avec pré-filtration des rayons X

Courtoisie E. Coche

National Lung Screening Trial (NLST)

Etude Prospective Randomisée comparant le dépistage par *scanner faible dose* à un celui par radiographie thoracique avec comme critère principal de jugement la *mortalité par cancer pulmonaire* dans une population *à haut risque* de cancer du poumon

53 454 sujets

- Age 55-74 ans
- Asymptomatiques, fumeurs ou anciens fumeurs (30 PA)
- Anciens fumeurs: arrêt au cours des 15 années précédentes
- Absence d'antécédent de cancer du poumon
- Absence de scanner thoracique au cours des derniers 18 mois
- Absence d'hémoptysie
- Absence de perte de poids > 15 livres au cours de l'année N-1

Aberle. N Engl J Med 2011; 365: 395

National Lung Screening Trial – Study Design

Résultats du NLST

Réduction de 20% de la mortalité par cancer du poumon dans le groupe ayant eu le dépistage par scanner

Le risque absolu de décès par cancer du poumon diminue de 1,66% à 1,33% dans le bras dépisté par scanner

Réduction de 6,7% du taux de décès, toutes causes confondues parmi les sujets du bras scanner comparé à ceux ayant eu un dépistage par radiographie thoracique

Aberle. N Engl J Med 2011; 365: 395

NLST: Complications

Taux de complications

Scanner Faible dose: 1,4% Radiographie thoracique 1,6%

Complication majeure après une procédure invasive

0.06% (Scanner) et 0.02% (Radio) des résultats du test positif ne conduisant pas à un diagnostic de cancer du poumon 11.2% (Scanner) et 8.2% (Radio) résultats du test positif conduisant à un diagnostic de cancer du poumon

Décès du patient dans les 60 jours suivant une procédure diagnostique invasive

Scanner: 16 (10 ayant un cancer) Radio: 10 (10 ayant un cancer)

Essais Européens Randomisés (N=7)

NELSON Trial (Pays-Bas et Belgique)	15822	3 ans
Van Iersel. Int J Cancer 2007; 120:868		
DLCST (Danemark)	4104	5 ans
Pedersen. J Thorac Oncol; 2009; 4: 608		
MILD (Italie)	4471	10 ans
Pastorino. Respiration; 2006; 73: 5		
ITALUNG (Italie)	3206	5 ans
Lopes Pegna. Lung Cancer; 2009; 64: 34		
DANTE (Italie)	2472	4 ans
Infante. Am J Respir Crit Care Med; 2009; 180: 445		
LUSI (Allemagne)	6356	3ans
Becker. J Cancer Res Clin Oncol; 2012; 138: 1475		
UKLS (Grand Bretagne)	4055	1 an
Field. Thorax; 2016; 71: 161		

Depiscan

Etude de faisabilité sur 1000 sujets fumeurs d'un essai randomisé (scanner thoracique faible dose vs radiographie du thorax / PHRC-Inserm) Relative échec d'inclusion et forte contamination

La HAS

Blanchon. Lung Cancer; 2007; 58: 50

En janvier 2016 la HAS ne recommande pas le dépistage du cancer pulmonaire faute d'évaluation suffisante

Attente des résultats des essais européens

Un dépistage par scanner thoracique faible dose peut-il entrainer une réduction significative de la mortalité par cancer du poumon?

Contributions des Essais Randomisés Européens

Pooler les résultats des Essais Randomisés

Sélectionner des populations à plus haut risque de cancer du poumon afin d'améliorer sensibilité, spécificité, et coutefficacité

Déterminer l'intervalle optimal entre deux scanners de dépistage

Comparer les mesures volumiques aux mesures de diamètre des nodules

Heuvelmans. J Thorac Imaging; 2015; 30: 101

Comparaison des Mesures de Volume et de Diamètre des Nodules Pulmonaires

Le pourcentage des tests positifs des 2 premiers scanners NELSON: 2,6% et 1,8% NLST: 27,3% et 27,9% Valeur prédictive négative comparable (99,7% - 99,9% vs 99,9%)

Le protocole de l'étude NELSON basée sur la mesure de volume du nodule et l'usage du temps de doublement volumique pour le management des nodules est plus efficient avec moins de co-morbidité et des coûts inférieurs

Heuvelmans. J Thorac Imaging; 2015; 30: 101

Même protocole dans LUSI, UKLS et DLCST

> 40 yo. Smoking > 30 PY. Asbestos exposure. Oncologic patient.

Ganglions Lymphatiques Intrapulmonaires

Spontaneous Resolution of Solid Nodules

Approximately 10% (97/964) of solid nodules of intraparenchymal location and of intermediate (5-12 mm /50-500 mm³) size disappear on follow-up CT scans The spontaneously resolutive nodules have the same morphologic characteristics than malignant nodules

Zhao. Radiology; 2014; 270: 872

Typologie des Nodules Pulmonaires Détectés en TDM

New Histological Classification of Lung Adenocarcinomas (IASLC/ATS/ERS)

Pre-invasive lesions Atypical adenomatous hyperplasia (AAH) Adenocarcinoma in-situ Minimally invasive adenocarcinoma

Invasive Adenocarcinomas Lepidic predominant adenocarcinoma Acinar predominant adenocarcioma Papillary predominant adenocarcinoma Micropapillary predominant adenocarcinoma Solid predominant adenocarcinoma

Invasive Variants

Invasive mucinous A. / Colloid A. Well-differentiate fetal A. / Enteric A.

Non Solid

Part Solid

Travis. J Thorac Oncol; 2011; 6: 244

Solid Nodules ²		<6mm (<100mm³)	6 to 8mm >8mm (100mm ³ - 250mm ³) (>250mm ³)		Comments	
Single	Low risk ³	No routine follow-up	6 to 12 months CT, then consider 18 to 24 months CT Consider 3 months CT.		Nodules <6mm do not require routine follow-up, but certain high risk patients with suspicious nodule morphology	
•	High risk ³	Optional 12 months CT	6 to 12 months CT then 18 to 24 months CT	PET-CT, or tissue sampling	and/or upper lobe location may warrant 12 month follow up. (Recommendation 1A)	
Multiple	Low risk ³	No routine follow-up	3 to 6 months CT, then consider 18 to 24 months CT	Use most suspicious nodule as guide to management. Follow-up intervals may vary according to size and risk (Recommendation 2A).		
	High risk ³	Optional 12 months CT	3 to 6 months CT, then 18 to 2			
Subsolid Nodules ²		<6mm (<100mm ³)	<u>≥6n</u> (>100			
	Ground glass	No routine follow-up	6 to12 months CT to confirm persistence, then CT every 2 years until 5 years		In certain suspicious nodules <6mm, consider follow-up in 2 and 4 years. If solid component(s) or growth develops, consider resection. (Recommendations 3A and 4A).	
Single	Part-Solid	No routine follow-up	3 to 6 month CT to confirm per If unchanged and solid compo annual CT for 5 years	In practice, part-solid nodules cannot be defined as such until ≥6mm, and nodules <6mm do not usually require follow-up. Persistent part solid nodules with solid components ≥ 6mm should be considered highly suspicious. (Recommendations 4A - 4C)		
Multiple	3 to 6	6 months CT ider 2 and 4 year CT	3 to 6 months CT Subsequent management bas most suspicious nodule(s)	Multiple <6mm pure ground glass nodules are usually benign, but consider follow-up in selected high-risk patients at 2 and 4 years (Recommendation 5A).		

Table 1: Fleischner Society 2017 Guidelines for Management of Incidentally Detected Pulmonary Nodules in Adults

1. Recommendations do not apply to lung cancer screening, immunosuppressed patients, or patients with known primary cancer.

2. Dimensions are average of long and short axes, rounded to nearest millimeter.

3. Consider all relevant risk factors (See Risk Factors).

BPCO: Bronchiolite Obstructive et Emphysème

Analyse en microscanner de poumons prélevés sur des patients BPCO traités par transplantation pulmonaire (n= 12) et de poumons (controles) de donneurs (n=4)

Les sténoses et la destruction des bronchioles terminales précèdent clairement l'apparition de la destruction microscopique emphysèmateuse

McDonough. NEJM; 2011; 365: 1567

Evaluation des Patients BPCO: Différentes Apparences Morphologiques

VEMS: 25%

VEMS: 28%

QCT of Emphysema Extent and Gas Trapping in 700 CT Scans from the COPDGene Cohort

Frequency of occurrence of emphysema and airway predominant disease as a function of GOLD grade

Lynch et al. Unpublished data

Radiology

CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society¹

David A. Lynch, MB John H. M. Austin, MD James C. Hogg, MD, PhD Philippe A. Grenier, MD Hans-Ulrich Kauczor, MD Alexander A. Bankier, MD R. Graham Barr, MD Thomas V. Colby, MD Jeffrey R. Galvin, MD Pierre Alain Gevenois, MD, PhD Harvey O. Coxson, PhD Eric A. Hoffman, PhD John D. Newell, Jr, MD Massimo Pistolesi, MD Edwin K. Silverman, MD, PhD James D. Crapo, MD

The purpose of this statement is to describe and define the phenotypic abnormalities that can be identified on visual and quantitative evaluation of computed tomographic (CT) images in subjects with chronic obstructive pulmonary disease (COPD), with the goal of contributing to a personalized approach to the treatment of patients with COPD. Quantitative CT is useful for identifying and sequentially evaluating the extent of emphysematous lung destruction, changes in airway walls, and expiratory air trapping. However, visual assessment of CT scans remains important to describe patterns of altered lung structure in COPD. The classification system proposed and illustrated in this article provides a structured approach to visual and quantitative assessment of COPD. Emphysema is classified as centrilobular (subclassified as trace, mild, moderate, confluent, and advanced destructive emphysema), panlobular, and paraseptal (subclassified as mild

Visually Defined Patterns of COPD at CT

Emphysema Centrilobular Emphysema Panlobular Emphysema Paraseptal Emphysema

Airway Disease Bronchial Disease Small Airway Disease (SAD)

Associated Features

Bronchiectasis Large Airway Disease Interstitial Lung Abnormality Pulmonary Arterial Enlargement

Visually Defined Patterns of Emphysema at CT

1- Centrilobular Emphysema

a. Trace Centrilobular Emphysema (CLE)
b. Mild CLE
c. Moderate CLE
d. Confluent CLE
e. Advanced Destructive Emphysema (ADE)

2- Panlobular Emphysema

3- Paraseptal Emphysemaa. Mild Paraseptal Emphysema (PSE)b. Substantial Paraseptal Emphysema

Densitométrie Pulmonaire en TDM

Masque de Densité (Pourcentage d'Emphysème)

-950 UH

Densité du Percentile

(Valeur de Densité au dessous de laquelle un pourcentage de voxels prédéfini se trouve)

15ième Percentile

QCT Analysis of Emphysema Extent

Regional and lobar distribution

Upper, mid, lower

Gietama. Radiology; 2007; 244: 890

Lobar segmentation

Lynch. J Thorac Imaging; 2013; 28: 284

Quantitative Analysis of Pulmonary Vessels at CT in COPD Patients

Left lower lung

Visually Defined Patterns of Airway Disease at CT

Airway disease is commonly found with all forms of emphysema, but also commonly occurs in the absence of emphysema as a predominant expression of COPD

- 1- Bronchial Disease: thickening of walls of segmental and subsegmental airways
- 2- Small Airway Disease (SAD):
 - a. *Inflammatory SAD* can be directly identified on CT scan by the presence

of centrilobular micronodular opacities

b. Obstructive SAD is identified by gas trapping on expiratory CT, or

FEV1/FVC ratio < 0.7, in the absence of significant emphysema

Epaississement Pariétal Bronchique en TDM chez des patients BPCO

Signe subjectif avec importante variation interobservateur

> Grenier. Eur Radiol; 1996; 6: 199 Barr. COPD; 2012; 9: 151

Mieux apprécié par comparaison avec des standards visuels de sujets normaux et de patients BPCO

Morphometric Analysis of Airways in Multislice CT

cross-section morphometric analysis

Fetita. IEEE Trans Med Imaging; 2014,

QCT Analysis of Airways Dimensions

WA/LA/WA%

Brillet. Eur Radiol; 2007; 17: 1483

QCT Analysis of Airways: Metrics

LA: luminal area WA: wall area WT: wall thickness WA%: wall area percentage: WA / (LA+WA) LV%: luminal volume percentage Peak WAV: peak wall attenuation value Mean WAV: mean wall attenuation value WA-Pi10mm / WT-Pi10mm

SR WA-Pi10mm: square root of wall area of a hypothetical bronchus with a 10 mm luminal perimeter, calculated from linear regression of all measured bronchi

> Hackx. Radiology. 2012; 265: 34 Hackx. Radiology; 2015; 277: 853

Inflammatory Small Airway Disease

Small Centrilobular Nodules of Ground Glass Attenuation

Obstructive Small Airway Disease in COPD

Expiratory CT, performed at functional residual capacity or at residual volume is a power tool for determining the severity of airway obstruction and to quantify gas trapping

INSPIRATION

EXPIRATION

Expiratory CT may be performed at a lower CT radiation dose (50 mAs or less) *Bankier. Radiology*; 2007; 242: 898

QCT Analysis of Gas Trapping in COPD

% low attenuation area at -856 HU or -850 HU at endexpiration CT (Exp_856, Exp_850)

In a study on 4062 COPDGene subjects with or without COPD, LAAexp-₈₅₆ provided remarkably high correlations with predicted FEV₁% and FEV₁/FVC ratio

Schroeder. AJR; 2013; 201:460

The expiration to inspiration ratio of mean lung density (E/I-ratio_{MLD})

 $(E/I-ratio_{MLD})$ is most suitable for detecting air trapping in smokers and performs significantly better than other suggested quantitative measures

Mets. Eur Radiol; 2012; 22:120

QCT Analysis of Gas Trapping in COPD

Change in relative lung volume with attenuation values from -860 HU to -950 HU (RVC₋₈₆₀₋₉₅₀) between paired inspiratory and expiratory scans

Emphysema extent

-950 HUinsp: 45.6%

Matsuoka. AJR; 2008; 190: 762

Gas trapping extent

-860 //-950 HU: 10.3% Courtesy to N. Sverzelatti

Parametric Response Map (PRM): a Voxel-wise Image Analysis Technique

PRM^{Emph} %voxels < -950HU_{insp} and <- 856_{exp} PRM^{Normal} %voxels \geq -950HU_{insp} and > -856_{exp}

Parametric Response Map (PRM): a Voxel-wise Image Analysis Technique

www.imbio.com

SAGITTAL SLICE - LEFT MIDLINE

SAGITTAL SLICE - RIGHT MIDLINE

CORONAL SLICE

Voxels ABOVE -950 HU on inspiration Voxels ABOVE -856 HU on expiration

FUNCTIONAL LOW DENSITY AREA

Voxels ABOVE -950 HU on inspiration Voxels BELOW -856 HU on expiration

PERSISTENT LOW DENSITY AREA

Voxels BELOW -950 HU on inspiration Voxels BELOW -856 HU on expiration

%	TOTAL LUNG	LEFT LUNG			RIGHT LUNG				
		Total	Upper	Middle	Lower	Total	Upper	Middle	Lower
Normal	$24\pm1^{*}$	27 ± 1	23 ± 1	16 ± 1	48 ± 2	21 ± 1	15 ± 2	12 ± 1	34 ± 2
Functional	50 \pm 1	51 ± 1	61 ± 2	56 ± 1	37 ± 2	49 ± 1	57 ± 2	51 ± 1	41 ± 2
Persistent	25 ± 1	20 ± 1	15 ± 1	27 ± 1	14 ± 1	30 ± 1	27 ± 1	36 ± 1	24 ± 1

Data was run with FILTERING ON

Vol (L)	TOTAL LUNG	LEFT LUNG	RIGHT LUNG
Inspiration	9.4	4.5	4.9
Expiration	7.2	3.5	3.8

*THE RANGES PROVIDED WITH THE LDA RESULTS ARE AN INDICATION OF THE ACCURACY OF REGISTRATION (SEE USER MANUAL FOR MORE INFORMATION). THIS DOES NOT ACCOUNT FOR ADDITIONAL SOURCES OF VARIATION SUCH AS SLICE THICKNESS, IMAGE NOISE, SCANNER CALIBRATION OR RESPIRATORY PHASE.

VALUES ON FUNCTIONAL ASSESSMENT REPORT ARE CALCULATED BASED ON THE EXPIRATORY IMAGE. VALUES MAY DIFFER FROM INSPIRATION ASSESSMENT REPORT AS THE PERSISTENT LOW DENSITY AREA REPRESENTS VOXELS WHICH ARE LOW ON BOTH INSPIRATION AND EXPIRATION AND THE PERCENTAGES ARE CALCULATED BASED ON THE EXPIRATORY IMAGES.

www.imbio.com

Quantitative CT for Phenotyping Patients with COPD

427 male smokers (187 without COPD and 240 with COPD) Measurement of %LAA₋₉₅₀ and SR-WAPi10mm

> CT-normal Phenotype (N=52)Airway-dominant Phenotype (N=39)Emphysema-dominant Phenotype (103)Mixed Phenotype (N=46)

COPD patients with the mixed phenotype are associated with more severe dyspnea and more frequent hospitalisations (2.0 to 3.6 times) than those with each of the remaining CT-phenotypes (P < 0.05)

Tho. Ann Am Thorac Soc; 2015; 12: 988

Lung Texture Analysis for Quantitative CT Imaging

Association PO/PINS chez une femme agée de 53 ans souffrant d'un syndrome des antisynthétases (Anti-JO1)

Contrôle à 3 ans

SUMMARY	NORMAL	HYPERLUCENT	GROUNDGLASS	RETICULAR	HONEYCOMB
TOTAL LUNG	58 %	0 %	27 %	15 %	0 %
Left Lung (1.4 L)	56 %	0 %	31 %	13 %	0 %
Left Upper (T/C/R)	63 % / 85 % / 43 %	0%/0%/0%	23 % / 9 % / 36 %	14%/6%/21%	0%/0%/0%
Left Middle (T/C/R)	49 % / 68 % / 17 %	0%/0%/0%	39 % / 29 % / 56 %	12%/3%/27%	0%/0%/0%
Left Lower (T/C/R)	57 % / 80 % / 44 %	0%/0%/0%	29 % / 12 % / 39 %	13%/7%/17%	1%/1%/0%
Right Lung (1.3 L)	60 %	0 %	22 %	18 %	0 %
Right Upper (T/C/R)	79 % / 96 % / 62 %	0%/0%/0%	11 % / 2 % / 20 %	10%/2%/18%	0%/0%/0%
Right Middle (T/C/R)	63 % / 79 % / 37 %	0%/0%/0%	21 % / 14 % / 33 %	16%/7%/30%	0%/0%/0%
Right Lower (T/C/R)	20 % / 26 % / 18 %	0%/0%/0%	44 % / 47 % / 43 %	36 % / 27 % / 39 %	0%/0%/0%

T = total, C = core, R = rind, T = C + R

*Total lung capacity predicted using Crapo's method as noted in Crapo RO, Morris AH, Clayton PD, and Nixon CR. Lung Volumes in Healthy Nonsmoking Adults. Bull. Europ. Physiopathol. Respir. 1982; 18:419-425.

www.imbio.com

Imagerie par Résonance Magnétique du Thorax

Imagerie par Résonance Magnétique du Poumon

Séquence de contraste (T1 et T2)

Nodule pulmonaire

Mucoviscidose

Courtoisie François Laurent

Imagerie par Résonance Magnétique du Poumon

Séquence à temps d'écho ultracourt (UTE) Séquence PETRA (acquisition 3D avec synchronisation respiratoire)

Courtoisie François Laurent

Imagerie par Résonance Magnétique du Poumon

Séquence PETRA (acquisition 3D avec synchronisation respiratoire)

Mucoviscidose

Courtoisie François Laurent
Imagerie par Résonance Magnétique du Poumon

Courtoisie François Laurent

Imagerie par Résonance Magnétique du Poumon

- Séquences morphologiques (séquences à temps d'écho ultracourt)
- Séquences de contraste (T1 et T2)
- Séquences fonctionnelles

Angiographie et perfusion Ventilation (Helium et Xénon hyperpolarisés) Diffusion O_2 (Ventilation et diffusion)

Indications

Pédiatriques cardiovasculaires Mucoviscidose Cancer de l'apex HTAP post-emboliques Embolie pulmonaire au cours de la grossesse Seconde intention en oncologie

Perspectives

BPCO / Asthme / PID / Réponse tumorale

Courtoisie François Laurent

Futurs Développements en Imagerie Thoracique

Progrès Technologiques en TDM

- Diminution de la taille des détecteurs (0,25 mm)
- Augmentation de la matrice (2048)
- Imagerie Spectrale
- TDM à Comptage Photonique

Progrès en Analyse d'Image

- CAD
- Analyse de Texture
- Intelligence Artificielle (Machine Learning)

Progrès de L'IRM

- Imagerie morphofonctionnelle
- Application de la TEP-IRM en oncologie